Latent Dirichlet Allocation

Mostly based on Murphy's book, with unified notations.

Generative model

\[\begin{aligned} \boldsymbol{\pi}_{i}|\alpha &\sim Dir(\alpha\boldsymbol{1}_{K})\\ q_{il}|\boldsymbol{\pi}_{i} &\sim Cat(\boldsymbol{\pi}_{i})\\ \boldsymbol{b}_{k}|\gamma &\sim Dir(\gamma \mathbf{1}_{V})\\ y_{il}|q_{il}=k,\boldsymbol{b}_{k} &\sim Cat(\boldsymbol{b}_{k}) \end{aligned} \]

Gibbs sampling

\[\begin{aligned} p(q_{il}=k|\cdot)&\propto exp[log\boldsymbol{\pi}_{i,k}+log\boldsymbol{b}_{k,y_{il}}]\\ p(\pi_{i}|\cdot)&=Dir({\alpha\boldsymbol{1}_{K}+\sum_{l}\mathbf{I}(q_{il}=k)})\\ p(b_{k}|\cdot)&=Dir({\gamma\boldsymbol{1}_{V}+\sum_{i}\sum_{l}\mathbf{I}(y_{il}=v,q_{il}=k)}) \end{aligned} \]

Dirichlet distribution is conjugate prior for Categorical distribution.

The first can be obtained based on line 2 and 4 of the generative model.

The second can be obtained based on line 1 and 2 of the generative model.

The third can be obtained based on line 3 and 4 of the generative model.

Collapsed Gibbs sampling

\[\begin{aligned} p(q_{il}=k|\cdot)&\propto \frac{c^{-}_{vk}+\gamma}{c^{-}_{k}+V\gamma} \frac{c^{-}_{ik}+\alpha}{L_{i}+K\alpha}\\ \end{aligned} \]

This can be directly obtained from the 3 conditional distributions mentioned in Gibbs sampling and a property of Dirichlet distribution, i.e.

\[E[X_{i}]=\frac{\alpha_{i}}{\sum_{k=1}^{K}\alpha_{k}} \]